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Abstract

In this paper, we present an approach for Multi-target

and Multi-Camera Vehicle Tracking and another approach

for Vehicle Re-Identification (ReID) across multiple cam-

eras. We evaluate both approaches over ”CityFlow: A City-

Scale Benchmark” participating in Track 1 and Track 2 of

2019 AI City Challenge Workshop. The proposed tracking

approach is based on applying detection and tracking of

multiple moving vehicles for each camera. Afterwards, we

cluster such results (detections of vehicles) obtained from

multiple cameras with overlapped fields of view. The clus-

tering is based on appearance and spatial distances on a

common plane for all camera views. The optimal number

of clusters is obtained by using validation indexes. Then,

a spatio-temporal linkage of the obtained clusters is per-

formed to obtain the trajectories of each moving vehicle in

the scene. We tested different combinations for the input of

the proposed approach (detector and tracker) and provide

sample results for selected scenarios of ”CityFlow: A City-

Scale Benchmark”. The proposed re-identification system is

based on the combination of adapted deep learning feature

embedding representations and a distance metric learning

process. We also include the vehicle tracking information

provided by the ”CityFlow: A City-Scale Benchmark” in

order to improve the results. We tested different combina-

tions of features, metric learning and the use of tracking

information and provide sample results for the CityFlow-

ReID dataset.

1. Introduction

Making traffic safer, smarter and more flow-optimized

using data collected by camera sensors is a desired and chal-

lenging task. This problem requires of infrastructure, data,

as well as process capability, and of course, algorithms able

to deal with Multi Target Multi-Camera (MTMC) track-

ing and Vehicle re-identification (ReID). Ultimately, it is

necessary to track vehicles over large areas that span mul-

tiple cameras at different locations in all weather condi-

Figure 1. Some examples of different camera views from the

CityFlow benchmark. Note the variety in view angles and lighting

conditions.

tions, as well as being able to identify the same vehicle

throught out its whole way. To solve these requirements,

2019 AI City Challenge Workshop1 has been launched at

CVPR 2019. The challenge involves three distinct but close

tasks: 1) City-Scale Multi-Camera Vehicle Tracking, 2)

City-Scale Multi-Camera Vehicle Re-Identification and 3)

Traffic Anomaly Detection.

In this paper, we propose a MTMC tracking approach

targeting the first track of the competition and evaluated on

CityFlow: A City-Scale Benchmark for Multi-Target Multi-

Camera Vehicle Tracking and Re-Identificationt [41]. We

also propose an approach for the second track City-Scale

Multi-Camera Vehicle Re-Identification.

CityFlow is the first benchmark at city scale for tracking

monitoring in terms of the number of cameras, the nature of

the synchronized high-quality videos, and the large spatial

expanse captured by the dataset (10 intersections). In Fig-

ure 1 we show 4 sample frames out of the 40 cameras of the

complete dataset. It consists of 5 scenarios (S01-S05) and

666 labeled vehicles identities. Complete details of the data

can be found in [41].

The paper is organized as follows: Section 2 introduces

1https://www.aicitychallenge.org/
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the proposed approach for the first track of the competi-

tion, its related work 2.1, method 2.2 and experimental re-

sults 2.3. Similarly, Section 3 describes the participation

in the second track, its related work 3.1, method 3.2 and

finally, experimentan results in 3.3.

2. Track 1: A City-Scale Benchmark for Multi-

Target Multi-Camera Vehicle Tracking

2.1. Related Work

In this section we review related work for the areas cov-

ered by the proposed approach: identify the cameras simul-

taneously viewing each target and measurement-track asso-

ciation in multi-camera scenarios.

Initial approaches to group cameras viewing the same

target can be achieved by using external calibration

data [28] or by matching data across camera views using

for example color histograms [26]. According to [36], re-

cent approaches for such camera grouping for single targets

can be based on centralized optimization [43], distributed

rankings [49] and local cooperation [6]. Albeit success-

ful for single-target tracking across cameras, all these ap-

proaches rely on easily distinguishable targets and accurate

camera calibration. These assumptions limit their applica-

bility in large real setups, such as for the CityFlow bench-

mark, where many cameras simultaneously visualize mul-

tiple targets with similar appearance and motion patterns

while having camera calibration accuracy not perfect. In

this paper, we propose to extend these approaches for mul-

tiple targets whilst overcoming these limitations.

Measurement-track association is often known as data

association in the video tracking community where the

Hungarian method provides the optimal assignment given

some costs for each association [24]. Determining such

costs for achieving high tracking performance is still an

open issue. Hungarian costs can be based on spatial or ap-

pearance distances between tracks and detections in single

views [46]. Similarly [1] performs feature association using

Hungarian across views but requiring to known the num-

ber of targets and being visualized in all cameras views.

Hungarian-based association can be extended to consider

multiple hypotheses [15] and the use of re-identification ap-

proaches [33] where multiple features can be used [35].

Alternatively, other approaches avoid employing the Hun-

garian algorithm by projecting measurements in a com-

mon plane within a multi-camera track-before-detect ap-

proach [39]. In addition, data association can also be for-

mulated as a constrained optimization which requires tra-

jectories to be pre-computed [2].

2.2. Method

The proposed Multi Target Multi Camera (MTMC)

tracking method is composed of two main blocks, as shown

in Figure 2, for analyzing data in single and multiple cam-

eras set-ups. The first block aims to detect and track ve-

hicles from each independent camera. The second block

performs tracking across multiple cameras by modeling

appearance of bounding boxes detected for each camera;

projects them into a common plane to group detections of

the same object coming from different cameras; and, fi-

nally, associates trajectories over time to compute the final

tracks. It is important to note that the proposed approach

has been designed for a multicamera set-up where cameras

are correctly synchronized and have some overlapping field

of views.

2.2.1 Problem Formulation

Let Ω = {c1, ..., cN} be a network of N cameras. We con-

sider networks of calibrated and synchronized cameras with

delay-free communications with a central server storing all

frames for each camera. We use the index k to define the

time steps when frames are captured and synchronized.

For each camera cn, a number of target measurements

z
k,n
i (i = 0...Ik) is captured by applying specific detectors

over frames (e.g. car detector for car-based tracking in the

CityFlow benchmark). Each target measurement is defined

by a bounding box as z
k,n
i = [zi,x, zi,y, zi,W , zi,H ]. The set

of all measurements is defined as Zk,n = (zk,ni , ..., z
k,n
Ik

).
We assume at least two cameras viewing the same target.

Let Lk be a subset of cameras cn viewing the target jth at

k:

Lj,k = {cn : cn ∈ Ω, 1 ≤ n ≤ N}, 0 ≤
∣

∣Lk
∣

∣ ≤ N, (1)

where |·| is the set cardinality (size).

Let xk
j be the state of each jth moving target in the sce-

nario defined as x
k
j = [x, y, ẋ, ẏ,M], where (x, y) is the

target center location and (ẋ, ẏ) is the target velocity, both

represented using real world coordinates (e.g. GPS coordi-

nates for the CityFlow benchmark). M represents the fea-

tures describing the appearance of the corresponding target.

Each track is defined by Tj = (xk1

j , ...,xk2

j ) which deter-

mines the trajectory of each target.

The goal of our approach is twofold. First, to auto-

matically determine the number of cameras simultaneously

viewing each moving target (see Eq. (1)). Second, to asso-

ciate the detections Zk,n to tracks Tj in order to obtain the

trajectories of all moving targets in the scenario.

2.2.2 Single-camera Tracking and Object Detection

Multi Target Single Camera (MTSC) tracking is performed

solving the tracking-by-detection problem. The CityFlow

benchmark provides detections as bounding boxes using

three popular detectors: YOLOv3 [31], SSD512 [21] and

Faster R-CNN [32]. These three detectors make use of
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Figure 2. Block diagram of the proposed method.

pre-trained models on the COCO benchmark [20] and the

threshold value of 0.2 is applied to finally obtain the detec-

tions.

For tracking based on these detections, two online ap-

proaches such as DeepSORT [46] and MOANA [40] are

employed, and also TC [42] as an off-line method. The

CityFlow benchmark provides results for nine MTSC track-

ing solutions by combining the above mentioned detectors

(three) and trackers (three).

2.2.3 Feature Extraction

Feature extraction module models the appearance of each

detected box via deep learning features by considering the

AlexNet [17] and ResNet-101 [9] architectures, both pre-

trained on the ImageNet database [4]. Since ImageNet cov-

ers 1000 classes and we need to adapt the model to our tar-

get, i.e. vehicles, we train some layers of the network while

leaving others frozen. In detail, ResNet-101 is frozen be-

fore block3, and AlexNet is frozen before pool1 layer, fol-

lowing [11]. To fine-tune the network, we have employed

36,935 sample images of 333 vehicle identities, extracted

from the training set of ReID track 2 in the 2019 AI City

Challenge. We also set the learning rate to 3e-4 and batch

size to 10. We train for 6 epochs and use Stochastic Gra-

dient Descent with Momentum optimizer [30]. AlexNet

architecture give us a 4096-dimensional feature vector at

the output of fc7 layer, while we obtain a 2048-dimensional

vector at pool5 layer in ResNet-101 network.

2.2.4 Ground-Plane Clustering

This module is in charge of associating detections of the

same vehicle from different cameras obtained at the same

time. At every frame, we project all detections of every

camera to a common plane and apply hierarchical clustering

to cluster such projected detections. Figure 3 depicts an

example of projected detections and the computed clusters.

In addition, we employ cluster validity indexes to determine

which cluster structure is more suitable for our problem (i.e.

find the optimal number of clusters).

For ground-plane projection, we use the homogra-

phy matrices provided by the CityFlow benchmark which

project the GPS coordinates to the 2D image pixel location

of every camera. Therefore, we consider GPS coordinates

plane as the common plane and we project the middle point

of the bottom part of bounding boxes.

For clustering, we employ Hierarchical clustering based

on two features: visual appearance and spatial distance in

the ground-plane. We employ L2-norm for computing fea-

ture distances, but some limitations are applied using the eu-

clidean distance and the origin. Since two detections widely

separated are highly unlikely to come from the same vehi-

cle, we set a threshold such that the distance between ve-

hicles’ detections further than 6 meters in GPS plane is set

to a much higher value, see Figure 3(a). Similarly, as two

detections coming from the same camera cannot be merged

into the same cluster, the distance between them is also set

to the same high value (100 meters). By this way, two de-

tections are more likely to fit the same vehicle if they are

spatially close on the ground-plane and have similar visual

appearance.

Ideally, each cluster represents a vehicle and it can be

composed of several detections from different cameras or

composed of merely one detection, as can be seen in Fig-

ure 3(b). Note that each clusters is defined by its own cen-

troid, i.e. mean point at each coordinate axis.

As the number of the number of clusters is unknown a

priori, we have to determine empirically such optimal num-

ber. We therefore validate different clustering results using

validation indexes. We use internal validation, more specif-

ically, Dunn’s index [5], which aims to identify dense and

well-separated clusters. By this way, all possible associa-

tions with different number of clusters are computed and

we obtain an index value for each one. We obtain the op-

timal number of clusters, i.e. the number of vehicles, by

taking the index with maximum derivative, i.e. the point of

higher gradient, as show in Figure 4. We empirically found
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Figure 3. Projected detections from cameras 1-5 to GPS plane (a) and computed clusters (b) at frame 65 of scenario S01. In (a) each color

represents the camera the detection comes from, while in (b) each color represents a different cluster, which are defined by its centroid.

Figure 4. Dunn’s index validation at frame 23 of scenario S01. Red

point denotes the optimal number (15) of clusters in this frame.

that maximum derivative provides better information than

maximum value.

2.2.5 Spatio-Temporal Association

The following task, consisting on linking clusters over time,

is performed by the spatio-temporal association module.

Positions of each cluster along time form a track.

Tracks motion is estimated via a constant-velocity

Kalman Filter [13] and association between clusters and

predicted tracks is performed by the Hungarian Algo-

rithm [18] using euclidean distance (L2-norm) between the

spatial distances.

As for track management, we initialize tracks for clus-

Detector Tracker Model IDF1 IDP IDR c

YOLO3 DeepSort AlexNet 4.1 2.7 8.5 0.2

YOLO3 DeepSort ResNet-101 5.5 3.7 11.5 0.2

YOLO3 TC ResNet-101 5.4 3.7 10.0 0.2

SSD512 TC ResNet-101 8.5 6.2 13.5 0.2

SSD512 MOANA ResNet-101 8.4 5.8 14.9 0.2

SSD512 TC AlexNet 13.8 11.2 18.2 0.0001

SSD512 TC ResNet-101 14.5 11.7 19.1 0.0001

Table 1. Numerical results with different detector, tracker and ap-

pearance model combinations. Results obtained on train scenario

S01 (cameras 1-5). Parameter c stands for costOfNonAssignment

parameter in Hungarian assignment stage.

ters (i.e. associated detections across cameras) that remain

unassigned for 10 frames. Moreover, we also remove tracks

which are not associated to any cluster for 20 consecutive

frames.

2.3. Experimental Results

2.3.1 Parameters and System Modules

We have conducted several experiments with our approach

on S01 train scenario, consisting of 5 cameras pointing to

a road intersection, existing a common overlapping area

between them. Table 1 shows several conducted experi-

ments combining different object detectors, single object

trackers and appearance models. IDF1, IDP and IDR

stands for identification precision, identification recall and

F1 score, these metrics were introduced by DukeMTMC

benchmark [34]. Parameter c stands for costOfNonAssign-

ment parameter in Hungarian assignment stage, the higher

this value is, the higher the likelihood that every track will

be assigned to a cluster.

As it might be expected, we can draw from the first two
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Figure 5. Sample visual results in train scenario S01, cameras 1-4 at frame 71. Tracked vehicles in yellow with their correspondent IDs.

Same blue car is identified with the same ID, as well as the red car. However an error in the single camera tracking leads to a tracking error

in the red car in camera 2.

Camera 33

Camera 34
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Figure 6. Operation result in test scenario S05, cameras 33 and 34 at frame 1. Images on the left show tracked vehicles. Red line stands for

the same reference in both camera views and blue and orange stars for the bottom middle point of the tracked red car. Right plot depicts

both FOVs and the projection to the common plan of the reference line, both detections and FOVs.
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rows, that modelling appearance using ResNet-101 slightly

improves numerical results. As in [41], the combination

SSD512 + TC derives in our best performance regarding

object detector and tracker. And finally, from last two rows,

we can observe that parametrization is a key point. A

high cost leads to, almost forcibly, assign a cluster to ev-

ery tracks, even if the distance between them is huge. For

this reason, results are enhanced when decreasing c.

Figure 5 depicts a visual example of operation in train

scenario S01, cameras 1-4. Note that these cameras are

pointing to the same intersection with a common overlap

between them. The blue vehicle is identified with same ID

in cameras 1-3, as well as the red car. Error in ID 16, also on

the red car, is due to a mistake of the object detector. This

operation corresponds to last row in Table 1.

In Figure 6 we illustrates the tracking results in test sce-

nario S05, as well as the projected results to the common

GPS plane. Cameras of scenario S05 are supposed to be

temporally synchronized, however due to the wide camera

infrastructure provided by the CityFlow benchmark and the

difficulty in synchronizing such a great number of cameras,

some misalignment can be found. This issue is depicted

in 6, where left images show frame 1 of cameras 33 and 34

with their respective tracking output. Temporal misalign-

ment in these frames can be noticed by observing the red

car, which is ahead of the reference red line in camera 33,

while it is behind the line in camera 34. Fields of view

(FOVs) of both cameras, as well as the reference line and

the middle lower point of the bounding box containing the

red car in both cameras are projected to the common plan

in the right plot of Figure 6. As a result of the temporal

mismatch, the projected detections of the same vehicle are

quite far from each other, thus they will be never clustered

together following our clustering method. This limitation

adversely affects our numerical results.

2.3.2 CityFlow Challenge Results

Leaderboard of track 1 in CityFlow Challenge is shown in

Table 2. This classification ranks identification precision

(IDF1) on the test scenarios (S02 and S05). Both scenar-

ios comprise a total of 23 cameras. S02 is formed by 4

confronted cameras in a road intersection, similarly to S01

in 5. However, S05 consists of 19 cameras, spread out over

a wide extension, where maximum distance between two

cameras is 2.5 kilometers. It is important to remark that

cameras in S02 are completely overlapped between each

other, while in S05 there is no overlap between most of

them. Since our approach is completely dependent on pro-

jections, and therefore on overlap, predictably, it results in

a low performance, as can be seen in Table 2.

Ranking Team ID IDF1

1 21 0.7059

2 49 0.6865

3 12 0.6653

4 53 0.6644

5 97 0.6519

6 59 0.5987

7 36 0.4924

8 107 0.4504

9 104 0.3369

10 52 0.2850

11 48 0.2846

12 115 0.2272

13 108 0.2183

14 7 0.2149

15 60 0.1752

16 87 0.1710

17 79 0.1634

18 64 0.0664

19 43 0.0566

20 128 0.0544

21 68 0.0473

22 45 0.0326

Table 2. Leaderboard of track 1: City-Scale Multi-Camera Vehicle

Tracking, evaluated on test scenarios: S02 and S05. Bold indicates

our approach.

2.3.3 Discussion of Results

We have proposed a tracking approach for multiple vehicles

in multi-cameras scenarios. It is based on modelling appear-

ance of MTSC tracked vehicles, hierarchically clustering

them onto a common plane and, finally, applying Kalman

tracking between clusters and tracks.

It is important to remark that, as our system is mainly

based on the projected detections, a perfect time synchro-

nization is required for a proper operation. Other important

issues playing against our method, are projections errors

(due to the imperfection of the homography matrices) and

skipped frames (due to noise in video transmission) making

the video sequences not to be aligned. Again, as we mainly

rely on projected points, vehicles should follow a continu-

ous trajectory over the cameras’ fields of view, i.e. vehicles

trajectories should not go through any blind spot. If trajec-

tory is not continuous in cameras’ fields of views we will

lose it.

Due to the fact that most of the cameras in this bench-

mark are not overlapping and some frames are skipped, our

approach results on a low performance.

We are aware of the fact that our method presents short-

coming, since it is not adapted to the data, being not robust

to temporal mismatch, desynchronization due to skipped

frames and the non-overlapping fields of view. However,

we believe that future work will overcome these limitations.
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For instance, robustness to misdetections can be incorpo-

rated by considering re-projection of the detections between

cameras. To reduce reliance on temporal and spatial over-

lap, re-identification techniques could be included in this

approach.

3. Track 2: City-Scale Multi-Camera Vehicle

Re-Identification

3.1. Related Work

Vehicle re-identification (ReID) across multiple cameras

has been a critical problem in the Intelligent Transportation

System (ITS) for the recent years. The main reasons are the

frequent vehicle occlusions, the poor data quality, the sim-

ilarities in vehicles models and the variability of the same

vehicle from different points of views. We propose the com-

bination of multiple deep learning feature embedding repre-

sentations and the use of the vehicle trajectory information.

To address these issues, the state of the art [14] splits the

problem into a vehicle feature representation and a metric

learning in order to define a feature space such that, fea-

ture representations of the same object are closer than those

from different ones. Typical feature representations used in

the literature are: Ensemble of Localized Features (ELF)

[8], Local Descriptors encoded by Fisher Vectors (LDFV)

[22], multi-scale Biologically-inspired features encoded us-

ing Covariance descriptors (gBiCov) [23], color histograms

and SIFT features extracted from each patch (DenseColor-

SIFT) [51], color and texture Histograms from Local Bi-

nary Patterns (HistLBP) [47], LOcal Maximal Occurrence

(LOMO) [19], hierarchical Gaussian descriptor (GOG) [25]

and the convolutional neural networks trained for this clas-

sification objective: AlexNet [17], ResNet [9] and VGGNet

[37].

The metric learning methods most used in the litera-

ture are: Fisher Discriminant Analysis (FDA) [7], Local

Fisher Discriminant Analysis (LFDA) [29] and its kernel-

ized (KLFDA) [47], Marginal Fisher Analysis (MFA) [48]

and its kernelized (KMFA) [47], Cross-view Quadratic Dis-

criminant Analysis (XQDA) [19], discriminative null space

learning (NFST) [50], Information-theoric Metric Learn-

ing (ITML) [3], Large Margin Nearest Neighbour (LMNN)

[45], Probabilistic Relative Distance Comparison (PRDC)

[53], Keep-It-Simple-and-Straightforward (KISSME) [16]

and finally, Pairwise Constrained Components Analysis

(PCCA) [27] and its kernelized (KPCCA) [27].

We propose the combination of multiple deep learning

feature embedding representations and the use of the vehi-

cle trajectory information.

3.2. Method

This section describes the proposed multi-camera vehi-

cle ReID approach. As we can see in Figure 7, first we ob-

Figure 7. Flow diagram of the vehicle ReID system approach.

tain the query, train and test sets of feature representations.

Then, we learn the metric in order to get the re-identification

feature space, and finally we obtain the ranked distances be-

tween each query and all the test set.

3.2.1 Vehicle Feature Representation

In order to extract the feature representations, we use the

networks AlexNet [17], ResNet-18 [9], ResNet-50 [9],

ResNet-101 [9], Densenet-201 [12] and Inception-ResNet-

v2 [38]. We choose these networks because of their rele-

vance in scene and object classification. The methodology

is the same as explained in Section 2.2.3.

3.2.2 Vehicle Metric Learning

Instead of using the feature embedding representation and

the Euclidean distance (l2) to rank the test candidates, we

improve the performance of the system introducing a su-

pervision decision using the training data. In particular,

the metric learning allows to learn a feature space where

the feature vectors of the same vehicle ID are closer than

the features from different vehicles. After the evaluation of

the three most common metrics from the literature (XQDA

[19], NFST [50] and KISSME [16]), we had chosen for

the final evaluation the one with the best performance, the

XQDA.

3.2.3 Feature Combination at Distance Level

To increase the performance of our system, we develop a de-

cision combination at distance level. As we can see in Fig-

ure 8, we first extract the feature representations and learn

the metric learning space. Then we compute the distances

between the input query and all the images in the gallery.

At this point, the distances are normalized between 0 and 1.
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Figure 8. Feature combination at distance level.

The final re-identification decision is based in the averaged

distance.

3.2.4 Vehicle Trajectory Information

Each test track for the CityFlow-ReID dataset [41] contains

multiple images of the same vehicle captured by one cam-

era. According to the ranked distance between the query

and the test gallery, we can assume that if there are some

images of the same test track with small distances, i.e., high

confidence of being the same vehicle, the rest of the test

track should be also included in the ReID decision. There-

fore, we sort the test tracks that appear in each query (top-

100 matches) according to their first occurrence in the top-

100 rank. We include progressively in ascending distance

order, all the images of the sorted test tracks until we com-

plete the output list of 100 matches.

3.3. Experimental Results

3.3.1 CityFlow-ReID Challenge Results

Leaderboard of track 2 in CityFlow Challenge is shown

in Table 3. The metric used to rank the performance is

the mean Average Precision (mAP) [52] of the top-100

matches, that is the mean of all the queries average preci-

sion (area under the Precision-Recall curve).

We have conducted several experiments with different

feature combinations with and without the use of the vehicle

trajectory information. Finally, our best result with a mAP

value of 0.2505 is given by the combination of ResNet101,

DenseNet201 and ResNet50 features; and the proposed use

of the trajectory information. Note that the independent fea-

tures only obtain 0.1381, 0.1363 and 0.1205 mAP respec-

tively; and the combination of the three features without

tracking only obtains 0.1666 mAP. The method proposed

in this paper has finished the 60 out of the 84 participating

teams on the leader board, as can be seen in Table 3.

Ranking Team ID mAP

1 59 0.8554

2 21 0.7917

3 97 0.7589

4 4 0.7560

5 12 0.7302

6 53 0.6793

7 131 0.6091

8 5 0.6078

9 78 0.5862

10 127 0.5827

20 48 0.4610

30 41 0.3769

40 20 0.3339

50 79 0.2965

60 43 0.2505

70 146 0.2018

80 60 0.0146

Table 3. Leaderboard of track 2: City-Scale Multi-Camera Vehicle

Re-Identification. Bold indicates our approach.

3.3.2 Discussion of Results

We have proposed a vehicle re-identification (ReID) system

across multiple cameras, we have developed a system based

on adapted feature embedding representation and metric

learning techniques, that increase their accuracy with a de-

cision combination at distance level and adding the vehi-

cle tracking information. We believe that our future work

should explore other more recent fine-tuning strategies like

the hard triplet loss [10] and the association of the land-

marks from different points of view of the same vehicle ID

[44].
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